Ch 01_Mangan-45038.gxd 8/30/2006 8:28 PM Page 3 $

1

Fractals

A Metaphor for Constructivism,
Patterns, and Perspective

Why is geometry often described as cold and dry? One reason lies in its inability
to describe the shape of a cloud, a mountain, a coastline, or a tree. Clouds are not
spheres, mountains are not cones, coastlines are not circles, and bark is not
smooth, nor does lightning travel in a straight line.

Benoit Mandelbrot (1983, p. 1)

BACKGROUND: WHAT IS A FRACTAL?

Perhaps the most frequently studied and visually appealing principle of chaos
theory is the spectacular, computer-generated set of fractals, first conceived by
modern mathematician Benoit Mandelbrot (1983). Frustrated with the perfectly regu-
lar shapes of Euclidean geometry, Mandelbrot developed a whole new geometry more
in tune with the natural world. He called the irregular shapes fractals, meaning frag-
mented and irregular. Trees exhibit a chaotic growth plan. Clouds change constantly.
Mountains result from a combination of tectonic forces and erosion processes. Nature
evolves in irregular patterns: Bird beaks, canyons, sand, and waves are intricately fash-
ioned by the dynamic forces of growth, evolution, and erosion.

Whether viewed from afar or from a closer perspective, natural irregularities
repeat on smaller and smaller scales until they are no longer discernible to the
human eye. The delicate shape of a fern or a feather does not behave in straight lines
and perfect curves. Viewing patterns within patterns, Mandelbrot (1983) explained:

Nature exhibits not simply a higher degree but an altogether different level

of complexity. The number of distinct scales of length of natural patterns is
for all practical purposes infinite. (p. 1)
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Nature’s patterns are never exact.

The Koch snowflake, well-known to mathematicians, is a fractal shape that was
first constructed in 1904 by Helge von Koch, a Swedish mathematician. (To construct
a Koch snowflake, see Figure 1.1.) When magnified and rotated, exactly four pieces
of the snowflake’s edge, known as the Koch curve, yield the entire edge of the
snowflake (Figure 1.2). Congruent circles may be drawn around the original triangle
and each transformed view of the snowflake as it progresses from simple to com-
plex. Although the snowflake always fits within a finite area, the perimeter of the
snowflake is infinite. No piece of string could ever be long enough to fit completely
around the snowflake’s edge (Devaney, 1992).

The Koch snowflake may be compared to a lake or ocean shoreline when viewed
from a variety of different perspectives. Coastlines become increasingly longer as
more and more detail is included in the measure. When viewed from an airplane,
much of the shoreline detail is smoothed over and lost; however, when viewed from
a closer perspective, more details appear, and the perimeter increases. Unless a scale
is agreed on, all coastlines are infinite in length (Briggs & Peat, 1989). No wonder
reference books give conflicting mileage for the same shoreline. A snail traveling
around each tiny sand pebble would crawl farther than a deer would leap! Imagine
following the shoreline journey of a microscopic organism.

Mandelbrot (1983) retold a story in which young children are asked how long
they think the coastline of the eastern United States is. Children understand imme-
diately that the coastline is as long as they want to make it, and that the perimeter
increases as each bay and inlet is measured with increasingly smaller scales.
Margaret Wheatley (1994) discussed the futility of searching for precise measures for
fractal systems:

Since there can be no definite measurement, what is important in a fractal
landscape is to note the quality of the system—its complexity and distin-
guishing shapes, and how it differs from other fractals. (p. 129)

Mandelbrot’s coastline question has no final answer.

Mandelbrot (1983) discovered a surprising paradox emerging from chaos theory
and fractal geometry. Complex fractals may be generated from a simple mathemati-
cal process. In the 1980s, using computer technology, Mandelbrot first viewed the
fractal set that has been described as the most beautiful image of modern mathe-
matics (Figure 1.3). A voyage through the Mandelbrot Set reveals finer and finer
scales of increasing complexity, sea-horse tails, pinecone spirals, and island mole-
cules all resembling the whole set (Gleick, 1987). The beautiful jewel-like shapes are
symbolic of the nonlinear, modern world so full of complexities and seemingly
insolvable problems.

If simple leads to complex, could not the reverse be true? Margaret Wheatley and
Myron Kellner-Rogers (1996) believed so when they discussed how people seek orga-
nization and order in the world, even when chaos is present at the start. “Life is attracted
to order—order gained through wandering explorations into new relationships and
new possibilities” (p. 6). Perhaps complex problems have simple solutions that remain
hidden from view until the time is right for their simple truths to come forth.

Paradoxes such as simple to complex often appear in today’s world. Paradoxes
enrich people’s thinking by providing them with more choices, allowing them to
view things differently, and opening up the world for them to generate and create
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Directions for Koch Snowflake

Step 1 Step 2

Step 3 Step 4 (and so on)

Take the middle one-third of each side of an equilateral triangle and attach a new triangle
one-third the size. Continue attaching smaller-scale triangles onto the middle third of each
new triangle side, resulting in a self-similar and increasingly more intricate snowflake
pattern (Gleick, 1987).

Figure 1.1
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Koch Curve

Figure 1.2

their own meaning. John Briggs and F. David Peat (1989) asserted that in the future
fractals will undoubtedly reveal more about how chaos hides within regularity and
how stability and order can arise out of turbulence and chance. New ways of doing
and being may be contained within the old. Unusual and surprising patterns may
emerge when least expected. If teachers were to look deeply within themselves for
answers, hidden patterns, and universal themes, perhaps they could generate novel
purpose and vitality to science education.

IMPLICATIONS OF FRACTALS
FOR BRAIN-COMPATIBLE SCIENCE

Three implications of fractals for brain-compatible science are (1) wait for simple
truths to reveal greater complexities, (2) construct new meaning from the old, and
(3) search for repeating patterns and different perspectives. Parallels exist linking
fractal theory to brain-compatible science. Teachers need only to look at the many
natural patterns surrounding them to understand the innate ability of the human
brain to make connections by constructing new meaning from the old.

Wait for Simple Truths to Reveal Greater Complexities

Wheatley and Kellner-Rogers (1996) raised significant questions about the role of
structure. They wondered what people could accomplish if they stopped trying to
impose structure on the world and instead found a simpler way of doing things by
working with life’s natural tendency to organize. Educators might ask this question
of themselves as they begin a lesson with their students. Life’s events are patterned
similarly yet differently each day. Their beautiful, fractal patterns occasionally reveal
themselves, often times taking people by surprise. Will people be receptive to the
simple truths of life’s events when patterns emerge? Perhaps fractals can teach
educators something about simplifying the educational process.

Teachers tell students to line up, get it straight, sit up straight, don’t get out of
line, toe the line, stay on the mark. But where is the line? Where are the mark and the
straight? Perhaps they are still back in the age of machines and clockwork precision.
Teachers’ zest for lesson planning, structuring, and assessing often overshadows the
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sparks of creative insight that they forget to look for. In a frenzy to get things done
and to prepare for tomorrow or next week, teachers rush from one thing to the next,
missing out on beautiful moments of fractal simplicity. Perhaps teachers need to
slow down, allowing their brains to reveal the simple truths hidden in the complex
schedules and endless lists of things to do. Freed from the complexities that get in
the way of life’s natural tendency to organize, teachers may find a much more
creative and energetic form of complexity, one that leads to new discoveries and new
understandings about the educational process.

Construct New Meaning From the Old

Geoffrey and Renate Caine, current leaders in brain and learning theory, believe
in the brain’s constructivist capacity to make patterned connections among the
learning task, current experiences, past knowledge, and future behavior. Learning
occurs when new information is added to the existing information within the brain
and linkages develop between the old and new elements. Students construct their
own meaning by reflecting on and integrating new science knowledge with the old.
As concepts “construct,” broader and more inclusive concepts develop. In one of
their 12 mind/brain principles (see Introduction), the Caines (2006) stated that
learning involves both conscious and unconscious processes as understanding con-
tinues to construct in the brain long after the original learning experience. Teachers
need to present material in different ways, using real-life examples to make learning
meaningful.

Stephanie Pace Marshall (1999) compared the old educational paradigm with
the new in her 13 “principles for the new story of learning,” which closely connect
to recent theories about learning and the human brain. She explained how the pur-
pose of education is a lifelong acquisition of wisdom, and that prior learning is
essential to future learning. Learning is a dynamic process of constructing meaning
through personal inquiry and pattern formulation. Students must be fully engaged
through the reflective exploration of essential and deeply human questions.

In his constructivist dimensions of learning model, Robert Marzano (1992)
described how acquiring and integrating knowledge occur when information
already known and understood is used to make sense out of newly acquired knowl-
edge. Then knowledge is extended and refined as students develop new insights,
ideas, and discoveries about things they already know through questioning, com-
paring, classifying, inducing, deducing, and analyzing errors. Finally, students learn
to use new knowledge meaningfully as they reflect on the knowledge and apply it
to their everyday lives. Using knowledge meaningfully involves the use of higher-
level thinking skills, decision making, investigation, experimental inquiry, problem
solving, and invention.

For example, in a third- or fourth-grade lab about static electricity, begin with
a short discussion about personal experiences the students have had with this form
of electrical energy. Many students have at some time rubbed balloons against their
hair and experienced it standing on end. Students usually mention being shocked
while walking across a rug, touching a light switch, or when combing their hair on
a dry day. Groups of four students can go on to experiment with a variety of mate-
rials to investigate static electricity as an energy source. They can try various meth-
ods to get balloons to stick to the wall. They can rub two balloons with pieces of wool

o



Ch

01_Mangan-45038.gxd 8/31/2006 3:56 PM Page 8 CE

8 CHAOS THEORY

Fractal
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Fractal

Figure 1.3

Fractal images by Jock Cooper. © 2006. Used by permission.
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Fractal

Fractal

Fractal Magnification of Fractal Inset at Left

Figure 1.3 (Continued)

Fractal images by Jock Cooper. © 2006. Used by permission.
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or fur and watch the balloons push away from each other. Show the students how to
charge a comb with static electricity by rubbing it with wool or fur. Then bring the
comb close to little bits of tissue paper. Invite students to create a static electricity
experiment of their own using confetti, puffed rice, salt, pepper, dried parsley flakes,
saran wrap, tinsel, and the like. Throughout the lesson encourage communication
and positive interaction.

After cleaning up the materials, ask the students to explain their exciting
discoveries, sharing what they have learned about static electricity. Reflect upon
their experiences by writing and/or drawing pictures of their new understandings.
What additional activities would the students like to try? Perhaps give them ideas to
do and share with family at home.

Continue the lesson the next day with a discussion about lightning. What is
lightning? What causes it to occur? What are some lightning safety rules? How do
the students feel during a bad thunderstorm? Darken the room and rub two bal-
loons against some fur. Then hold the balloons, almost touching, and observe a spark
jump between them. When clouds and objects on the ground become charged with
static electricity, electrons jump from an area with a negative charge to a positively
charged area, producing a lightning bolt!

Howard Gardner (1991) concluded that children often grow into adults harbor-
ing deeply entrenched concepts about the world. For example, they might believe
that lightning and thunder occur when two clouds bump into each other or that the
Sun travels across the sky each day and disappears at night. Gardner contended that
education for understanding occurs only when students integrate prescholastic with
scholastic and disciplinary ways of knowing.

All understandings are partial and subject to change; far more important than
arrival at a “correct view” is an understanding of the processes whereby mis-
conceptions are reformulated or stereotypes dissolved. (Gardner, 1991, p. 152)

Even with advanced training, students too often regress back to their view of the
world from the perspective of a 5-year-old child (Gardner, 1991).

When students leave school at the end of a school day, teachers should not
assume that students make the connection between the taught lessons and their lives
outside of school. Cynthia Crockett (2004) discussed how educators must lead
students to deeper scientific understanding by helping them first to identify their
ideas and then to reflect on evidence to support their ideas.

Understanding science requires students to learn a vast array of facts,
processes, and skills. To ensure that this understanding is accurate, we need
to know what the students think and why they think it. . . . As educators, we
can expose students” misconceptions and help them unravel their false ideas.
We must then provide students with the opportunity and support to develop
a more accurate set of beliefs on which to build true scientific understand-
ings. (Crockett, 2004, p. 37)

Student understanding is constructed through thoughtful discussion and careful
assessment.

Many misconceptions appear when students are asked to explain how the
Earth, Moon, Sun, and stars relate to each other. To raise their level of understanding,
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students begin by comparing four ancient models of the Earth, explaining how the
Earth, Moon, Sun, and stars relate and interact. They invent their own ancient mod-
els of the world to describe the motion of the Sun in the sky, how it rises in the East,
goes overhead, and then sets in the West. Next, they present their ideas and, after
each presentation, encourage their classmates to ask questions and to engage in fur-
ther dialogue. Students see that many different models can be used to explain the
same set of observations. Later, students work in cooperative groups to discuss the
implications of the ball-shaped Earth model to help them develop insights about
Earth’s shape and gravity. They support their ideas with arguments or demonstrate
using globes (Sneider, 1989). Finally, students can participate in kinesthetic activities
to physically act out the relationships of the Earth, Moon, Sun, and stars. Through
the process of reflection, and by confronting their misconceptions, students recon-
struct their understanding of Earth and beyond, encompassing a more sophisticated
and scientific view.

Many perspectives and dimensions of learning exist. Science educators must
encourage students to look at the world from differing points of view, nudging them
toward complex, real-life experiences and creative problem solving. Learning takes
on a fractal scaling dimension as newly constructed meanings intertwine, web, and
build—the old contained within the new like nesting boxes.

One has to look for different ways. One has to look for scaling structures—
how do big details relate to little details. . . . Somehow the wondrous promise
of the Earth is that there are things beautiful in it, things wondrous and allur-
ing, and by virtue of your trade you want to understand them. (Feigenbaum
in Gleick, 1987, pp. 186-187)

Getting the “right answer” is not as important as the critical-thinking skills
that students develop while struggling to apply their mental models to real and
imaginary situations.

Search for Repeating Patterns and Different Perspectives

The world is filled with many natural patterns, the result of nature’s efficiency.
Nature uses the same pattern over and over again, if the pattern is suitable for
the purpose that nature has in mind. The spiral is one of the many basic designs that
seems to repeat itself in many natural systems. Spiral patterns on hurricane maps,
spiral-shaped galaxies, spirals on pinecones, and spiral-shaped seashells and snails
are a few examples. Additional natural patterns include branching, ripples and
waves, hexagons in beehives, bubbles, and radial symmetry.

Several of Caine and Caine’s (2006) brain-based learning principles deal with
the human brain’s strong need to make sense of the world through patterning (see
Introduction). The Caines believe that through patterning the search for meaning
happens naturally. Making sense of life experiences is innate as the brain works to
understand patterns and express them in uniquely creative ways. Patterning and
interconnecting are central to learning and understanding. Human brains want
learning to occur, making connections and seeking out patterns from the constant
information flow of life experiences. A combination of novelty and familiarity are
needed in a learning environment to ensure that true understanding takes place.
Embedded activities linked to students” prior experiences lead to meaningful and
genuine learning situations.
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In their work to initiate a paradigm shift in education, Caine and Caine (1997a)
identified three perceptual orientations, each reflecting a different perspective for
teaching and learning. Perceptual Orientation 1 is the traditional approach, with
the teacher in control and a fragmented curriculum. Perceptual Orientation 2, a more
complex perspective, uses complex materials and engaging experiences to create
meaning. With this approach, teachers may see links between some subjects while
maintaining strong conceptual boundaries between others. According to the Caines,
the ideal perspective is Perceptual Orientation 3, which they envisioned as brain
based, learner centered, and more dynamic, “with educational experiences that
approach the complexity of real life” (p. 25).

Teachers at this orientation are open to the multiple possibilities of inter-
connectedness. They know or sense that every subject in the curriculum is a
way of organizing human experience and is therefore interconnected at a deep
level. Thus, they do not see the ideas in the curriculum as standing alone—they
relate them to life experience. . . . (Caine & Caine, 1997b, pp. 128-129)

Caine and Caine averred that the key to transforming education lies in the
ability of teachers to transform themselves as they search for and evaluate the many
options open to them. The Caines (1997a) identified five indicators of the instruc-
tional approaches that seem significant to differentiate among the three orientations;
instructional objectives, use of time, sources for curriculum and instruction, dealing
with discipline, and approaches to assessment. No one of the five indicators in iso-
lation, however, can determine a teacher’s educational approach. As teachers grow
into Perceptual Orientation 3, instructional objectives become more connected to life
experiences; assessment, more authentic; and use of time, more flexible and student
centered. These teachers use multiple sources for curriculum and instruction and
replace traditional discipline procedures with the creation of collaborative commu-
nities focused on order, trust, and respect.

Each day teachers unravel their way through endless lists, schedules, meetings,
lesson plans, and science curricula, which can easily lock them into a structure that
is too confining for the nonlinear, constantly evolving world. Teachers must see what
is going on at every level for the clarity of vision to make change possible. They need
to step back from their science curricula and instructional strategies to gain a new
and perhaps enlightening perspective and to look for themes and patterns instead of
isolated causes and facts.

APPLICATION FOR BRAIN-COMPATIBLE SCIENCE

The following lesson plan, Changing Perspectives, introduces the chaos theory princi-
ple of fractals into a science/geometry lesson involving a simple snowflake shape
viewed from several different perspectives. Teachers discover that changing the
scale redefines the snowflake’s outer edge much in the same way that the human
brain is shaped by life experiences. Following the lesson plan is a web to incite more
creative ideas (Figure 1.10) and a chart to navigate the road to change in the brain-
compatible, science classroom (Figure 1.11).
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Lesson: Changing Perspectives

Chaos Theory Principle: Fractals
Grade Level: K-8, Gifted and Talented

Chaos Connection

e The Koch snowflake is a fractal pattern that repeats itself on increasingly smaller scales.

e The perimeter of the snowflake is infinite even though the snowflake always fits within a
finite area.

e When viewed from a variety of perspectives, coastlines become increasingly longer as more
detail is included in the measure.

Curriculum Connection

Geology
Weather
Measurement
Maps
Geometry

National Science Education Standards

e Content Standard A; 1-9
e Content Standard D; 1, 2

Obijectives (Students will .. .)

e Investigate the Koch snowflake as having an infinitely long perimeter and compare it to a
lake or coastal shoreline viewed from a tiny insect's perspective.
o Use critical thinking skills to analyze the potential complexity of a simple fractal shape.

Materials

1 Koch snowflake transparency (use Figure 1.4)

(d Koch snowflake handouts (Figures 1.5, 1.6, 1.7, 1.8, and 1.9)

1 Thin string or yarn

1 Compasses

(1 Transparency circles and/or laminated construction paper circles
1 Crayons or markers

[ Scissors

Preactivity Discussion

1. Introduce the Koch snowflake with the transparency, triangle, and six-pointed star, followed
with the more complex snowflake figures (see Figure 1.4). Ask the students to look closely at
the outside edges of the snowflakes and to explain how they are drawn. What repeating
pattern do they notice? (Students will see triangles and will comment on their size and the
number).

o
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Koch Snowflake Views

Figure 1.4

Copyright © 2007 Corwin Press. All rights reserved. Reprinted from Brain-Compatible Science, Second Edition, by Margaret
Angermeyer Mangan. Thousand Oaks, CA: Corwin Press, www.corwinpress.com. Reproduction authorized only for the local
school site that has purchased this book.
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. Discuss the following questions with the students: If we lay a string around the large

triangle and then around the six-pointed star, which string will be longer? Why? How will the
length of the string change if we lay it around the other two snowflake figures? Predict what
will happen when we draw circles around the triangle, star, and snowflake figures. How will
the size of the circles change?

Procedure

Organize the students into cooperative groups of two to four. Pass out handouts of the circle,
the triangle, the star, and the two snowflake shapes (use Figures 1.5, 1.6, 1.7, 1.8, and 1.9).

Inv

ite the students to experiment freely with the patterns. Give them the following ideas to

get started:

1.

2
3
4,
5

o

Color and cut out the snowflake patterns.

. Experiment with positioning the patterns in different ways.

. Hold the patterns up to the light to discover how they fit together.

Construct more triangles within triangles.

. Use string to measure around the edges of the figures to discover which shape is the

longest.
Use a compass to draw circles around the triangle and snowflake shapes.

Use transparency circles or laminated construction paper circles to discover that the figures
all fit inside a finite area.

Closure

1.

Circulate among the groups and discuss the students' observations. Ask students why the
patterns always remain within a finite area of congruent circles.

. Use the transparencies on an overhead projector to illustrate the relationships among the

circle, triangle, six-pointed star, and the two Koch snowflake views.

. Encourage students to share their pattern experiments.

Questions and Extensions

1.

Ask students to think about how many self-similar snowflake figures they could make. How
small will the sides eventually get? Can we keep on going to the molecular level? To the
level of atoms? To infinity? Just how long could the outside of the Koch snowflake get?
(Infinitely long!) What special tools might we eventually need for measuring?

. Continue with a discussion of a trip to the beach. How long is the beach shoreline? How

would the shoreline look when viewed from the air? From up on a bluff looking down? From
a student’s point of view? From a snail's point-of-view? Which view is the longest? What if a
small sand insect travels around each tiny pebble and grain of sand? If we could follow the

shoreline journey of a microscopic organism, how long would that take? Will the edge of the
snowflake ever be a perfectly straight line? Why not?

o
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3. Discuss why various encyclopedias, atlases, and other reference books may give different
mileage for the same shoreline or boundary. How many fine details do maps tend to smooth
out? What kinds of maps give the least detail? The greatest detail?

4. Have students choose one of the Koch snowflake patterns (Figures 1.8 or 1.9) and complete
the following activity. Cut carefully around the outside edge. Fold first in half and then in
sixths, matching the pattern on the edge. Cut lacy patterns from the folds. Open and
compare with classmates to see that no two snowflakes are ever the same.

5. Repeat the triangle exercise with a square. Have students draw a large square first and
two more complex views. All three must fit within congruent circles.

6. For a bodily/kinesthetic, experience or for younger students, enlarge the patterns so that
they are big enough for the students to walk around. Time how long it takes to walk once
around each. Provide rhythm by playing music in the background to keep the students' steps
consistent.

7. Have students compare a map of the same area drawn on three different scales. Which map
shows the greatest detail?

Technology Connection
Browse the following Web sites to find exciting new ideas for teaching science. Remember to
use links and keywords to search even more science-related sites.

A Fractals Lesson

http://math.rice.edu/ " lanius/frac/

The Spanky Fractal Database
http:/ /spanky.triumf.ca/

Fractals (many images)
http:/ /astronomy.swin.edu.au/ "~ pbourke/fractals/

Exploring Fractals
http://www.math.umass.edu/~ mconnors/fractal /fractal.html

These Web site addresses were accurate at the time of printing; however, as these sites are
updated, some of the addresses may change.
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Circle

Figure 1.5
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Triangle

Figure 1.6
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Koch Snowflake 1

Figure 1.8
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Koch Snowflake 2

Figure 1.9
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Web for Applying Fractals
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Figure 1.10
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NAVIGATING THE ROAD TO
CHANGE IN SCIENCE EDUCATION

Fractals

Too Much Order

On the Edge

Too Much Chaos

¢ Qverplan, structure, and
assess.

e Focus on isolated causes
and facts.

e Overemphasize previous
learning with tedious review.

¢ Disregard student
misconceptions.

e Dwell too long on
connections.

o View science education with
tunnel vision.

Simplify by working with life’s
natural tendency to organize.

Look for meaning in patterns
and themes.

Construct new meaning from
old with higher-level thinking
skills.

Confront student
misconceptions to raise level
of understanding.

Connect instructional

objectives to life experiences.

View science education from
a variety of perspectives for
a balanced outlook.

Do not bother to structure,
organize, or plan.

Overemphasize the
importance of patterns and
themes.

Ignore previous learning.

Allow discussion of
student misconceptions
to shift away from the
focus of the lesson.

Forget to make connections.
View science education from

an idealistic view by going
with every new trend.

Figure 1.11





